Characterizing isomorphisms in terms of completely preserving invertibility or spectrum
نویسندگان
چکیده
منابع مشابه
Linear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras
Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.
متن کاملIsomorphisms Preserving Invariants
Let V and W be finite dimensional real vector spaces and let G ⊂ GL(V ) and H ⊂ GL(W ) be finite subgroups. Assume for simplicity that the actions contain no reflections. Let Y and Z denote the real algebraic varieties corresponding to R[V ] and R[W ] , respectively. If V and W are quasi-isomorphic, i.e., if there is a linear isomorphism L : V → W such that L sends G-orbits to H-orbits and L se...
متن کاملInvertibility Preserving Linear Maps of Banach Algebras
This talk discusses a conjecture of R. V. Kadison and myself. Our conjecture is that each one-to-one linear map of one unital C*-algebra onto another that preserves the identity is a Jordan isomorphism if it maps the invertible elements of the first C*-algebra onto the invertible elements of the other C*-algebra. Connections are shown between this conjecture and Cartan’s uniqueness theorem. 1. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2009
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2009.05.041